Symmetries Then and Now

Nathan Seiberg, IAS

40th Anniversary conference
Laboratoire de Physique Théorique
Global symmetries are useful

- If unbroken
 - Multiplets
 - Selection rules
- If broken
 - Goldstone bosons for continuous
 - Domain walls for discrete
- Landau’s classification of phases
- More sophisticated: ‘t Hooft anomalies
- **But no global symmetries in gravity**
Gauge symmetry is deep

• Largest symmetry (a group for each point in spacetime)
• Useful in making the theory manifestly Lorentz invariant, unitary and local (and hence causal)
• Appears in
 • Maxwell theory, the Standard Model
 • General Relativity
 • Many condensed matter systems
 • Deep mathematics (fiber bundles)
But

• Because of Gauss law the Hilbert space is gauge invariant. (More precisely, it is invariant under small gauge transformation; large gauge transformations are central.)

• Hence: **gauge symmetry is not a symmetry.**
 • It does not act on anything.

• A better phrase is **gauge redundancy.**
Gauge symmetry can appear trivial

• Start with an arbitrary system and consider some transformation, say a $U(1)$ phase rotation on some fields. It is not a symmetry.

• Introduce a Stueckelberg field $\phi(x)$, which transforms under the $U(1)$ by a shift.

• Next, multiply every non-invariant term by an appropriate phase $e^{i\phi(x)}$, such that the system has a local $U(1)$ gauge symmetry.
 • $e^{i\phi(x)}$ is a nowhere vanishing section, so only trivial bundles – no monopole flux.

• Clearly, this is not a fundamental symmetry.
Gauge symmetry is always unbroken

• Not a symmetry and hence cannot break
• For spontaneous symmetry breaking we need an infinite number of degrees of freedom transforming under the symmetry. Not here.
• Hence, there is no massless Goldstone boson.
• For weakly coupled systems (like Landau-Ginsburg theory of superconductivity, or the weak interactions) the language of spontaneous symmetry breaking is perfectly appropriate and extremely useful [Stueckelberg, Anderson, Brout, Englert, Higgs, ...].
Global symmetries can emerge as accidental symmetries at long distance. Then they are approximate.

Exact gauge symmetries can be emergent.
Examples of emergent gauge symmetry

• The example with the added field $\phi(x)$ above.
• Some σ-models can be described using gauge fields (e.g. the CP^N σ-model) and then they become dynamical.
 – This is common in condensed matter physics.
• Simple dualities
 – In $3d$ a compact scalar is dual to Maxwell theory, whose gauge symmetry is emergent.
 – In $4d$ Maxwell theory is dual to a magnetic Maxwell theory.
Duality in interacting field theories

\[N = 4 \] supersymmetry

• This is a scale invariant theory characterized by a
gauge group \(G \) and a complex coupling constant
\[\tau = \frac{\theta}{2\pi} + \frac{4\pi}{g^2} i \] for each factor in \(G \).

• For simply laced \(G \) the theory with \(\tau \) is the same as
with \(\tau + 1 \) (shift \(\theta \) by \(2\pi \)) and the same as with \(-1/\tau\)
generating \(SL(2, \mathbb{Z}) \)...
Duality in interacting field theories
\(N = 4 \) supersymmetry

• The duality is an exact equivalence of theories.
 • Same spectrum of states
 • Same spectrum of operators
 • Same correlation functions
• \(\tau \to -1/\tau \) maps strong to week coupling.
• More technical:
 • This ignores certain global issues.
 • Some modifications for non-simply laced \(G \).
Duality in interacting field theories

\[N = 4 \] supersymmetry

- The gauge symmetry of the dual description is emergent!
- Which of the two gauge symmetries is fundamental?
- Which set of gluons is elementary?
- More likely, neither gauge symmetry is fundamental.
Interacting gauge theories

Start at short distance with a gauge group G. Depending on the details we end up at long distance with:

- IR freedom – a free theory based on G (same theory)
- A nontrivial fixed point. Interacting conformal field theory – no notion of particles.
- An approximately free (IR free) theory of bound states
- An empty theory – gap (possible topological order)

All these options are realized in QCD for various numbers of flavors. (The approximately free theory is a theory of pions.)
Duality in interacting field theories

$N = 1$ supersymmetry

Here there is also a dual description based on another gauge theory with gauge group \tilde{G} (magnetic theory).

• When the original theory (electric) is IR free the dual theory is strongly coupled.

• When the electric theory flows to a non-trivial fixed point so is the magnetic theory. The two theories are in the same universality class...
Duality in interacting field theories

$N = 1$ supersymmetry

Electric theory G

Magnetic theory \tilde{G}

Non-trivial IR fixed point
Duality in interacting field theories

$N = 1$ supersymmetry

A third option:

- Electric theory
 - Based on G

 \[\downarrow \]

- Approximately free theory (IR free)
 - Based on \tilde{G}
Duality in interacting field theories
\[N = 1 \] supersymmetry

In the **UV** an asymptotically free theory based on \(G \)
In the **IR** an IR free theory based on \(\tilde{G} \)

At low energies QCD has pions. This theory has a non-Abelian gauge theory.

- The gauge fields of \(\tilde{G} \) are composite.
- Their gauge symmetry is emergent.
- There is no ambiguity in the IR gauge symmetry – approximately free massless gauge fields.
Duality in interacting field theories

$N = 1$ supersymmetry

In all these cases

• As the original electric theory becomes more strongly coupled, the magnetic theory becomes more weakly coupled.

• When the electric theory confines the magnetic theory exhibits spontaneous gauge symmetry breaking (meaningful because it is weakly coupled).

• Clear physical demonstration of dynamical properties of gauge theories. In particular, emergent gauge fields.
Many more examples of emergent gauge symmetries

• Many known examples based on different
 – gauge groups and matter representations
 – spacetime dimensions
 – amount of supersymmetry
• They exhibit rich physical phenomena.
• They lead to interesting mathematics (many applications).
• **Duality and emergent gauge symmetry are ubiquitous.**
Emergent general covariance and emergent spacetime

- So far we discussed duality between two field theories
- String-string duality
 - T-duality
 - S-duality
 - U-duality
- String-fields duality
 - Matrix models for low dimensional string theories
 - BFSS M(atrix) model
 - AdS/CFT
 - More generally gauge-gravity duality
Generalized Global Symmetries

• View QFT as a collection of ops and their correlation functions
 – Include local and extended observables: lines, surfaces, etc.

• The gauged version of these symmetries
 – In physics Kalb-Ramond and later Villain
 – In mathematics Cheeger-Simons theory

• As with ordinary symmetries:
 – Should study the global symmetry first and then gauge it.
 – Gauge symmetry is not intrinsic
 – Global symmetry is unambiguous
Generalized Global Symmetries

• Ordinary global symmetries
 – Charge: operator associated with co-dimension one manifolds, e.g. whole of space
 – The charged operators are point-like
 – The charged states are particles (0-branes)
• Generalization: q-form global symmetries
 – Charge: operator of co-dimension $q + 1$-manifold
 – The charged operators are of dimension q, e.g. Wilson and ‘t Hooft lines
 – The charged states are q-dimensional (q-branes), e.g. strings
q-form global symmetries

As with ordinary symmetries:

• Selection rules on amplitudes
• Couple to a background classical gauge field (twisted boundary conditions)
 – Interpret 't Hooft twisted boundary conditions as an observable in the untwisted theory
• Gauging the symmetry by summing over twisted sectors (like orbifolds)
 – New parameters in gauge theories – discrete θ-parameters (like discrete torsion)
• Dual theories often have different gauge symmetries. But the global symmetries must be the same
 – non-trivial tests of duality including non-BPS operators
q-form global symmetries

As with ordinary symmetries:

- The symmetry could be spontaneously broken
 - Continuous: the photon is a Goldstone boson
 - Discrete: a topological theory in the IR. Long range topological order

- Anomalies and anomaly inflow on boundaries or defects
 - ‘t Hooft matching – Symmetry Protected Topological phases

- Characterize phases – unified description, extending Landau’s
 - Confinement = one-form global symmetry unbroken
 - Strings, loops with area law
 - Higgs or Coulomb = one-form global symmetry broken
 - Various other phases (mixed, oblique, partial breaking)
Conclusions

• Gauge symmetries are not fundamental. They can emerge in the IR without being present in the UV.
 – It is often convenient to use them to make the description manifestly Lorentz invariant, unitary and local.
 – But there can be different such (dual) descriptions.

• There is a lot more to learn about gauge and global symmetries
Happy 40th Anniversary