Accueil > Recherche > Physique statistique et applications

Physique statistique et applications

L’activité en physique statistique au LPT-ENS a été historiquement liée à l’étude des systèmes désordonnés dont les propriétés physiques sont fortement influencés par la présence d’interactions hétérogènes. Outre cette activité, l’équipe « Physique Statistique et Applications » du LPT-ENS travaille sur une large variété de questions, allant d’aspects abstraits de physique mathématique à des applications à la matière condensée, à la biologie ou à l’informatique.

Les théories des champs conformes, les systèmes intégrables ou la géométrie aléatoire figurent parmi les structures mathématiques étudiées au LPT-ENS. Ces dernières possèdent de nombreuses applications à la physique statistique moderne, dans l’etude des transitions de phase, des systèmes quantiques critiques, des processus ou phénomènes physiques aléatoires. Elles sont bien-sûr étroitement liées aux théories des cordes. Nos travaux englobent par exemple le développement de modèles géométriques de théories des champs conformes et de leurs applications, la compréhension physique et mathématique de courbes ou d’interfaces aléatoires, l’étude de l’intégralité stochastique dans le cadre des modèles de croissance : un ensemble de thèmes étudiés en contact étroit avec des développements similaires en mathématiques.

Les systèmes désordonnés font encore partie des thèmes de physique statistique théorique abordés au LPT-ENS. Les concepts et les outils méthodologiques liés à la notion de brisure d’ergodicité ou à l’influence de nombreux états d’équilibre en présence de désordre y sont activement développés. Ils sont indispensables à la compréhension de la transition vitreuse, à celle de la dynamique des systèmes hors d’équilibre en présence de chocs ou d’avalanches, etc. Ils ont également trouvé des applications profondes dans d’autres domaines, hors du champ de la physique statistique, en particulier en informatique (problèmes d’optimisation et informatique quantique) ou dans la théorie des graphes aléatoires.

Comprendre les principes qui régissent la dynamique des systèmes quantiques hors d’équilibre, par des approches allant de l’obtention de résultats exacts à des solutions numériques, est un autre aspect important de notre activité. Nous étudions ainsi les propriétés fondamentales des bruits et des trajectoires quantiques de systèmes sous observation et contrôle permanents. Nous étudions également les scénarios, fondés par exemple sur la compétition entre contrôle et dissipation, dans lesquels des phénomènes physiques hors d’équilibres peuvent être utilisés comme ressources afin de réaliser des états exotiques de la matière, tels que la supraconductivité à haute température ou impliquant l’intrication quantique sur de longues durées.

En comparaison des matériaux passifs, les systèmes biologiques posent de nouveaux défis à la physique statistique car ils impliquent des interactions sur plusieurs échelles et sont intrinsèquement hors d’équilibre. Notre objectif est de décrire les propriétés émergentes qui sous-tendent le fonctionnement remarquablement précis des systèmes vivants. L’émergence d’expériences de plus en plus précises et reproductibles rend aujourd’hui ce défi réaliste. Les champs d’applications de nos recherches vont des systèmes nerveux et immunitaire aux protéines, du développement à l’évolution et au comportement animal.

Pour plus d’informations sur les recherches en cours :

ARON Camille

ARON Camille

(Out-of-equilibrium many-body phenomena in statistical physics, Condensed-matter physics, and quantum optics)

Lire la suite

BERNARD Denis

BERNARD Denis

(Statistical physics and mathematical physics)

Lire la suite

JACOBSEN Jesper

JACOBSEN Jesper

(Conformal field theory, Exactly solvable models)

Lire la suite

Le DOUSSAL Pierre

Le DOUSSAL Pierre

(Condensed Matter and Statistical Physics)

Lire la suite

MONASSON Remi

MONASSON Remi

(Statistical physics, learning and inference & applications to biological systems)

Lire la suite

SEMERJIAN Guilhem

SEMERJIAN Guilhem

(Statistical mechanics, Disordered systems, Optimisation problems)

Lire la suite

WALCZAK Aleksandra

WALCZAK Aleksandra

(Statistical biophysics)

Lire la suite

WIESE Kay

WIESE Kay

(Disordered systems and functional renormalization)

Lire la suite

ZAMPONI Francesco

ZAMPONI Francesco

(Theory of glasses, granulars, and other amorphous solids, Agent-based models for macroeconomy, Quantum disordered systems, Quantum algorithms, Non-equilibrum statistical mechanics)

Lire la suite